Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Braz J Med Biol Res ; 55: e11820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35588524

RESUMEN

The aim of the present study was to verify the role of lactate as a signaling molecule in cardiac tissue under physiological conditions. C57BL6/J male mice were submitted to acute running bouts on a treadmill at different exercise intensities (30, 60, and 90% of maximal speed - Smax) under the effect of two doses (0.5 and 5 mM) of α-cyano-4-hydroxycynnamate (CINN), a blocker of lactate transporters. Cardiac lactate levels, activity of the enzymes of glycolytic [hexokinase (HK) and lactate dehydrogenase (LDH)] and oxidative metabolism [citrate synthase (CS)], and expression of genes also related to metabolism [LDH, nuclear factor erythroid 2-related factor 2 (NRF-2), cytochrome oxidase IV (COX-IV), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)] were evaluated. Elevated cardiac lactate levels were observed after high intensity running at 90% of Smax, which were parallel to increased activity of the HK and CS enzymes and mRNA levels of PGC-1α and COX-IV. No changes were observed in cardiac lactate levels in mice running at lower exercise intensities. Interestingly, prior intraperitoneal administration (15 min) of CINN (0.5 mM) significantly reduced cardiac lactate concentration, activities of HK and CS, and mRNA levels of PGC-1α and COX-IV in mice that ran at 90% of Smax. In addition, cardiac lactate levels were significantly correlated to both PGC-1α and COX-IV cardiac gene expression. The present study provides evidence that cardiac lactate levels are associated to gene transcription during an acute bout of high intensity running exercise.


Asunto(s)
Condicionamiento Físico Animal , Factores de Transcripción , Animales , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/farmacología , Expresión Génica , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal/fisiología , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Braz. j. med. biol. res ; 55: e11820, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1374708

RESUMEN

The aim of the present study was to verify the role of lactate as a signaling molecule in cardiac tissue under physiological conditions. C57BL6/J male mice were submitted to acute running bouts on a treadmill at different exercise intensities (30, 60, and 90% of maximal speed - Smax) under the effect of two doses (0.5 and 5 mM) of α-cyano-4-hydroxycynnamate (CINN), a blocker of lactate transporters. Cardiac lactate levels, activity of the enzymes of glycolytic [hexokinase (HK) and lactate dehydrogenase (LDH)] and oxidative metabolism [citrate synthase (CS)], and expression of genes also related to metabolism [LDH, nuclear factor erythroid 2-related factor 2 (NRF-2), cytochrome oxidase IV (COX-IV), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)] were evaluated. Elevated cardiac lactate levels were observed after high intensity running at 90% of Smax, which were parallel to increased activity of the HK and CS enzymes and mRNA levels of PGC-1α and COX-IV. No changes were observed in cardiac lactate levels in mice running at lower exercise intensities. Interestingly, prior intraperitoneal administration (15 min) of CINN (0.5 mM) significantly reduced cardiac lactate concentration, activities of HK and CS, and mRNA levels of PGC-1α and COX-IV in mice that ran at 90% of Smax. In addition, cardiac lactate levels were significantly correlated to both PGC-1α and COX-IV cardiac gene expression. The present study provides evidence that cardiac lactate levels are associated to gene transcription during an acute bout of high intensity running exercise.

3.
Life Sci ; 261: 118298, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32822717

RESUMEN

AIMS: 1) Characterize the progression of exercise intolerance in monocrotaline-induced pulmonary hypertension (PH) in mice and 2) evaluate the therapeutic effect of aerobic exercise training (AET) on counteracting skeletal and cardiac dysfunction in PH. MAIN METHODS: Wild type C57BL6/J mice were studied in two different time points: 2 months and 4 months. Exercise tolerance was evaluated by graded treadmill exercise test. The AET was performed in the last month of treatment of 4 months' time point. Cardiac function was evaluated by echocardiography. Skeletal muscle cross-sectional area was assessed by immunofluorescence. The diameter of cardiomyocytes and pulmonary edema were quantified by staining with hematoxylin-eosin. The variables were compared among the groups by two-way ANOVA or non-paired Student's t-test. Significance level was set at p < 0.05. KEY FINDINGS: After 2 months of MCT treatment, mice presented pulmonary edema, right cardiac dysfunction and left ventricle hypertrophy. After 4 months of MCT treatment, mice showed pulmonary edema, right and left cardiac dysfunction and remodeling associated with exercise intolerance and skeletal muscle atrophy. AET was able to reverse cardiac left ventricle dysfunction and remodeling, prevent exercise intolerance and skeletal muscle dysfunction. Thus, our data provide evidence of skeletal muscle abnormalities on advanced PH. AET was efficient in inducing an anti-cardiac remodeling effect besides preventing exercise intolerance. SIGNIFICANCE: Our study provides a robust model of PH in mice, as well as highlights the importance of AET as a preventive strategy for exercise intolerance and, skeletal and cardiac muscle abnormalities in PH.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Hipertensión Pulmonar/fisiopatología , Miocitos Cardíacos/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Progresión de la Enfermedad , Prueba de Esfuerzo , Hipertensión Pulmonar/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Factores de Tiempo
4.
Braz J Med Biol Res ; 51(11): e7660, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30304133

RESUMEN

Lactate modulates the expression of lactate oxidation complex (LOC)-related genes and cardiac blood flow under physiological conditions, but its modulatory role remains to be elucidated regarding pathological cardiac stress. The present study evaluated the effect of lactate on LOC-related genes expression and hemodynamics of hearts submitted to myocardial infarction (MI). Four weeks after MI or sham operation, isolated hearts of male Wistar rats were perfused for 60 min with Na+-lactate (20 mM). As expected, MI reduced cardiac contractility and relaxation with no changes in perfusion. The impaired cardiac hemodynamics were associated with increased reactive oxygen species (ROS) levels (Sham: 19.3±0.5 vs MI: 23.8±0.3 µM), NADPH oxidase (NOX) activity (Sham: 42.2±1.3 vs MI: 60.5±1.5 nmol·h-1·mg-1) and monocarboxylate transporter 1 (mct1) mRNA levels (Sham: 1.0±0.06 vs MI: 1.7±0.2 a.u.), but no changes in superoxide dismutase (SOD), catalase, NADH oxidase (NADox), and xanthine oxidase activities. Lactate perfusion in MI hearts had no additional effect on ROS levels, NADox, and NOX activity, however, it partially reduced mct1 mRNA expression (MI-Lactate 1.3±0.08 a.u.). Interestingly, lactate significantly decreased SOD (MI-Lactate: 54.5±4.2 µmol·mg-1·min-1) and catalase (MI: 1.1±0.1 nmol·mg-1·min-1) activities in MI. Collectively, our data suggest that under pathological stress, lactate lacks its ability to modulate the expression of cardiac LOC-related genes and the perfused pressure in hearts submitted to chronic MI. Together, these data contribute to elucidate the mechanisms involved in the pathogenesis of heart failure induced by MI.


Asunto(s)
Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Animales , Catalasa/análisis , Expresión Génica , Ácido Láctico/análisis , Masculino , Complejos Multienzimáticos/análisis , NADH NADPH Oxidorreductasas/análisis , NADPH Oxidasas/análisis , Oxidación-Reducción/efectos de los fármacos , Perfusión , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Valores de Referencia , Superóxido Dismutasa/análisis , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Xantina Oxidasa/análisis
5.
Braz. j. med. biol. res ; 51(11): e7660, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951727

RESUMEN

Lactate modulates the expression of lactate oxidation complex (LOC)-related genes and cardiac blood flow under physiological conditions, but its modulatory role remains to be elucidated regarding pathological cardiac stress. The present study evaluated the effect of lactate on LOC-related genes expression and hemodynamics of hearts submitted to myocardial infarction (MI). Four weeks after MI or sham operation, isolated hearts of male Wistar rats were perfused for 60 min with Na+-lactate (20 mM). As expected, MI reduced cardiac contractility and relaxation with no changes in perfusion. The impaired cardiac hemodynamics were associated with increased reactive oxygen species (ROS) levels (Sham: 19.3±0.5 vs MI: 23.8±0.3 µM), NADPH oxidase (NOX) activity (Sham: 42.2±1.3 vs MI: 60.5±1.5 nmol·h−1·mg−1) and monocarboxylate transporter 1 (mct1) mRNA levels (Sham: 1.0±0.06 vs MI: 1.7±0.2 a.u.), but no changes in superoxide dismutase (SOD), catalase, NADH oxidase (NADox), and xanthine oxidase activities. Lactate perfusion in MI hearts had no additional effect on ROS levels, NADox, and NOX activity, however, it partially reduced mct1 mRNA expression (MI-Lactate 1.3±0.08 a.u.). Interestingly, lactate significantly decreased SOD (MI-Lactate: 54.5±4.2 µmol·mg−1·min−1) and catalase (MI: 1.1±0.1 nmol·mg−1·min−1) activities in MI. Collectively, our data suggest that under pathological stress, lactate lacks its ability to modulate the expression of cardiac LOC-related genes and the perfused pressure in hearts submitted to chronic MI. Together, these data contribute to elucidate the mechanisms involved in the pathogenesis of heart failure induced by MI.


Asunto(s)
Animales , Masculino , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Perfusión , Factores de Tiempo , Catalasa/análisis , Expresión Génica , Ratas Wistar , Ácido Láctico/análisis , Complejos Multienzimáticos/análisis , NADH NADPH Oxidorreductasas/análisis
6.
Exp Physiol ; 99(4): 616-20, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24273305

RESUMEN

Reduced aerobic capacity, as measured by maximal oxygen uptake, is a hallmark in cardiovascular diseases and strongly predicts poor prognosis and higher mortality rates in heart failure patients. While exercise capacity is poorly correlated with cardiac function in this population, skeletal muscle abnormalities present a striking association with maximal oxygen uptake. This fact draws substantial attention to the clinical relevance of targeting skeletal myopathy in heart failure. Considering that skeletal muscle is highly responsive to aerobic exercise training, we addressed the benefits of aerobic exercise training to combat skeletal myopathy in heart failure, focusing on the mechanisms by which aerobic exercise training counteracts skeletal muscle atrophy.


Asunto(s)
Terapia por Ejercicio , Tolerancia al Ejercicio , Insuficiencia Cardíaca/terapia , Músculo Esquelético/fisiopatología , Atrofia Muscular/terapia , Enfermedades Musculares/terapia , Animales , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Contracción Muscular , Músculo Esquelético/patología , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Enfermedades Musculares/complicaciones , Enfermedades Musculares/fisiopatología , Miocardio/patología , Consumo de Oxígeno , Recuperación de la Función , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...